
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55195 793

Enhancing Text Mining Using Side Information

Prof. P.S. Toke
1
, Rajat Mutha

1
, Omkar Naidu

1
, Juilee Kulkarni

1

Department of Computer Engineering, PVPIT, Savitribai Phule Pune University1

Abstract: One of the widely researched data mining problem in the text domains is Clustering. Classification,

document organization, visualization, indexing and collaborative filtering are some of the various applications of this

problem. Large amount of information present within documents is in the form of text. We cannot always retrieve data

in a refined text format. It also contains a lot of Side Information, int the form of different links in the document, user-

access behaviour, and document provenance information from web - logs or other non-textual attributes. Large amount

of information may be contained in these attributes for clustering purposes. To estimate the relative information is very
difficult and cumbersome in most of the cases, particularly when some of information is noisy data. In such situation,

integrating this side information into mining process can be risky, because it might result in either:

1. Addition of noise into the data

2. Improvement of quality of data mining process

An ethical way is needed for performing the data mining process, and for maximizing the advantages of the use of this

available side information. We are proposing the use of K-means algorithm for improved and efficient clustering of the

information in this paper.

Keywords: Information-Retrieval, Text-mining, Clustering, K-means, Side Information.

I. INTRODUCTION

The problem of text clustering appears in the context of

many application domains such as the web, social

networks, and other digital collections. Auxiliary

information also known as Side Information or Meta data

is available within text documents in several text mining

application. Links in the document, Document provenance

information, and other non textual attributes which are

contained in the document and web logs are the different

kind of side information.

1. Information Retrieval
The activity of obtaining information resources relevant to

an information need from a collection of information

resources is termed as Information Retrieval (IR). These

searches can be based on full-text indexing."Information

overload" is reduced using the automated information

retrieval systems. The most visible IR applications include

Web search engines. An information retrieval process is

initiated when a user enters a query into the system.

Queries are formal statements of information requirements,

for example search strings in web search engines.

2. Text Mining

Text mining is termed as the process of deriving high-

quality information from text. Text mining refers to the

process of structuring the input text, deriving patterns

within the structured data, and finally evaluation and

interpretation of the output. Common text mining tasks

include text categorization, text clustering, concept

extraction, document summarization, and entity relation

modelling. A typical application is to scan a set of

documents containing text written in a natural language

and either populate a database or search index with the
information extracted or model the document set for

predictive classification purposes.

3. Side Information

A tremendous amount of side information is also

associated along with the documents in many application

domains. This is mainly because text documents typically

occur in the context of a variety of applications in which

there may be a large amount of other kinds of database

attributes or meta-information .This metadata can be

useful to the clustering process. Some examples of such

side-information include:

 In an application which tracks user access behaviour of

web documents, the user-access behaviour may be

captured in the form of web logs. Such kind of logs can

be used for enhancing the quality of the mining process

in a way. This is because these logs can often pick up

subtle correlations in content, which cannot be picked

up by the raw text alone.

 Most text documents containing links among them can
also be treated as attributes. These attributes may

provide insights about the correlations among

documents in a way which may not be easily accessible

from raw content.

 Many web documents contain meta-data which provides

ownership, location, or even temporal information that

may be informative for mining purposes.

4. Clustering

Clustering is the process of grouping a set of objects in

such a way that objects in the same group known as cluster,
are more similar to each other than to those in other

clusters. It is a main activity of exploratory data mining. It

also is a typical technique for statistical data analysis, used

in many domains. Various algorithms are used to achieve

clustering. These algorithms differ significantly in their

view of what constitutes a cluster and how to efficiently

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55195 794

find them. Clustering can be stated as a multi-objective

optimization problem. The working of an appropriate

clustering algorithm depends on the individual data set and

intended use of the results. Cluster analysis is not an

automatic task in a way, but an iterative process of

knowledge discovery or interactive multi-objective

optimization based on trial and failure. Cluster analysis

can be a tool to gain insight into the distribution of data to

observe characteristics of each cluster.

II. DATA AND METHODOLOGY

Our approach is to build a system based upon existing

search engines like Google, Bing, Yahoo and many others

that return web documents using numerous approaches of

identifying relevant information from the observable

internet. After obtaining these links (which will be referred

to as original links henceforth), we try to remove noisy

information which may not be relevant to the query

entered and diagnose additional links and web documents

which may be appropriate relevant to the query.

Data mining algorithms for clustering are one of the best

ways to obtain related information, by grouping similar

objects together. For text clustering, the actual text needs

to be transformed in a suitable format for clustering. The

scheme to be followed is:

A. Initialization Phase

B. Main Phase

C. Result Generation Phase

A. Initialization Phase

Step 1: The documents refer to the text that is acquired

from web documents. These are achieved by doing a

simple keyword search on a search engine. These

documents represent our original seeds. The additional
documents which may be relevant are gained by

recursively obtaining web links from each of the original

document contents.

Step 2: The obtained documents cannot be used directly

for clustering. The reason behind this is that natural

language contains a lot of redundant and irrelevant words

which can mislead algorithms which focus on word count

and word weight. Stopping technique is applied to filter

unwanted irrelevant information, redundant words such as

“is”, “am”, “are”, “there”, “when”, “then”,"of" etc.

Step 3: These filtered documents are saved separately and
then used for processing in the main phase. Each of the

filtered documents is collected and then passed to the main

phase.

B. Main Phase

Step 1: Filtered documents are processed one by one by

applying text mining techniques i.e. Shared Word Count,

Word Count Bonus (to calculate weight of words),

similarity measures. Similarity measures considered are

cosine similarity and Pearson measure. Euclidean distance

or Minkowski distance are the different other methods
used to calculate the distance in terms of similarity

between different documents.

Step 2: Step 1 provides the list of attributes and base for

clustering and classification of documents. K-means

clustering is the prime way to arrange objects into

different clusters. All the filtered documents are reiterated

to devise their clusters using weighted characteristics and

similarity measures. Nearest neighbour approach is also

applied before assignment of any document to a particular

cluster. Each technique has some weight and sum of the

weights is used for finalizing the documents. This step

establishes the core process of the working of the system.

A detailed explanation of how k-means algorithm works is
given further.

Step 3: The performance of the method is increased by

applying clustering incrementally.

C. Result Generation Phase

Evaluation of the implemented system shall be done using

different data mining measuring features such as accuracy,

sensitivity, f-measure etc. Precision and Recall are two

important measures of accuracy in any information

retrieval algorithms. Precision provides us the number of

retrieved documents that are actually relevant. Recall
measures the total number of relevant documents which

were retrieved. We need to identify which documents

might be considered relevant by the user for calculating

precision. Recall may consider the original links and their

sub links as the total number of documents to be

considered.

 Results shall be compared with the results of original

COATES algorithm provided in base paper.

III. MODELLING

K-means:
K-means (MacQueen, 1967) is one of the classic

unsupervised learning algorithms that can be used to solve

the well known clustering problem. The procedure

includes easy and simple steps to classify a given data set.

The initial idea is to define k centroids, one for each

cluster. These centroids should be placed in a cunning way

because different location can cause different result. It is

necessary to place them as much as possible far away from

each other. The next step is to take each point belonging to

a given data set and associate it to the nearest centroid.

When all the points get associated to respective cluster, the
first step is completed and an early grouping is done. Now

we need to re-calculate k new centroids as binary centres

of the clusters resulting from the previous step. After the

calculation of k new centroids, a new binding has to be

done between the same data set points and the nearest new

centroid. A loop gets generated because of which we may

notice that the k centroids change their location step by

step until no more changes are done. In other words

centroids do not move any more.

Finally, the aim of this algorithm is to minimize an

objective function, here a squared error function. The

objective function is as follows:

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55195 795

where |xi-cj| is a chosen distance measure between a data

point xi and the cluster centre cj, which indicates the

distance of the n data points from their respective cluster

centres.

The algorithm is composed of the following steps:

1. Place K points into the space represented by the objects

that are being clustered. These points represent initial

group centroids.

2. Assign each object to the group that has the closest

centroid.
3. When all objects have been assigned, recalculate the

positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move.

This produces a separation of the objects into groups from

which the metric to be minimized can be calculated.

TF-IDF:

TF-IDF refers to term frequency-inverse document

frequency. TF-IDF weight is a weight often used in

information retrieval and text mining. How important a

word is to a document in a collection is evaluated using
this statistical measure. The importance increases

proportionally to the number of times a word appears in

the document but is offset by the frequency of the word in

the corpus. Various TF- IDF weighting schemes are

usually used by search engines as a central tool to score

and rank a document's relevance to a given user query.

How to Compute:

The TF-IDF weight comprises of two terms: the first

computes the normalized Term Frequency (TF), aka. the

number of times a word appears in a document, divided by

the total number of words in that document; the second
term is the Inverse Document Frequency (IDF), calculated

as the logarithm of the number of the documents in the

corpus divided by the number of documents where the

specific term appears.

TF: Term Frequency measures how frequently a term

appears in a document. As every document differs in

length, it is possible that a term would appear much more

times in long documents than shorter ones. Hence, the

term frequency is often divided by the document length

(aka. the total number of terms in the document) as a way
of normalization:

TF (t) = (Number of times term t appears in a document) /

(Total number of terms in the document).

IDF: Inverse Document Frequency measures the

importance of a term in a document. All terms are

considered as of equal importance while computing TF,

However certain terms such as "is", "of", and "that", may

appear frequently but have little importance. Thus we need

to weigh down the frequent terms while scale up the rare

ones. This can be computed using the following:

IDF (t) = log_e (Total number of documents / Number of

documents with term t in it).

Frequency count plays a major role in ranking data, it has

to counts the frequency of word occurrence in text

document and also determine which are all the document

contain that a word. With the help of frequency count

compute the importance of document for that word,

suppose the word is repeated for more number of times

then the word is related to the subject and it play a major

role in that document. By using support vector machine

measure the distance between the word and the document

with the help of cosine similarity method.

IV. DESIGN

1. Query

This is the first step where the user will enter a query to

the system. This query will be directed to the class Servlet.

2. Servlet
This is the main base class which will act as a controller of

all the processing to be carried out. All the processing will

be redirected by this Servlet class. Firstly it is connected to

Google to which the query is forwarded.

3. Google

This will return an array list of strings or links associated

or relevant to the query entered by the user. An arraylist is

a dynamic array that is of no fixed size.

4. Docstorage and Docscraper

The system returns to the Servlet and it further connects to
the 'DocStorage' class which visits the links using the

'Docscraper' class. This class uses Jsoup.Jsoup is a java

html parser. It is a java library that is used to parse HTML

documents. Jsoup provides API to extract and manipulate

data from URL or HTML files. Hence DocScraper class

extracts links and text within the links using Jsoup and

returns it to the DocStorage class. Further the DocStorage

is connected to a database which uses DAO.

5. DAO

DAO is Data Access Object. DAO is used to avoid
conflicts and provides flexibility to change the database

anytime. The content is stored by DocStorage using DAO.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55195 796

6. Vector Space Creator

The Servlet class is further connected to a 'Vector Space

Creator' class. Servlet sends the original query to this

vector space creator .Here this class performs stop word

removal process. Stopwords are common words that carry

less important meaning than the keywords. Stop word

removal process removes stopwords from the keyword

phrase to give the most relevant result.

After this process, a vector is generated out of this original

query and sent back to the Servlet.

7. K-DocFactory-

Servlet sends the vector generated to the 'K-docFactory'
class. This class is connected with the DAO through which

the content stored is accessed. Using this vector, the tf-idf

is generated.TF-IDF is the Term Frequency-Inverse

Document Frequency is intended to reflect how important

a word is to a document in a collection or corpus. The

result is in the form of a K-DocList. This K-DocList is

sent back to the Servlet class.

8. K-Means

Servlet sends this K-DocList, vector generated, size of the

vector and K-value to the 'K-Means' class. This class
performs the k-means clustering .The result is obtained in

the form of clusters which hold the most relevant links

extracted and processed. A clustered arraylist is sent back

to the Servlet.

9. Ranker

This clustered arraylist is sent by the Servlet to the

'Ranker' class. This class is used for the ranking process.

This process returns the documents with highest frequency

being placed first and then in ascending order in respective

clusters. After ranking, if there exist any empty clusters

then those are also removed.

10. Result

A successful result can be obtained in the form of clusters

containing all the relevant links to the query entered by the

user. An error can also be encountered as result if the

requirements of the system are not satisfied or if a wrong

query is entered.

V. RESULT AND ANALYSIS

We tried two different distance measures for calculating
the distance between documents and the cluster centroid,

which are Euclidean distance and Cosine distance.

Euclidean distance allows us to calculate the straight line

distance between two points in a vector plane, and is

usually one of the most widely used measurements for

calculating distances. On the other hand, cosine similarity

allows us to calculate both aspects of a vector - direction

and magnitude. Direction is the "preference" or

"sentiment" of the vector, while the magnitude indicates

how potent it is along that direction. Cosine similarity is

popular in text mining applications due to the ability to
categorize them by their overall sentiment using angular

distance. We can use cosine distance as an inverse of

cosine similarity in order to find the magnitude of

difference rather than similarity. Since our algorithm

considers a vector representation of the query for

clustering to promote the use of side information in the

form of a user query, and not the bag-of-words based

representation of the entire text, using cosine similarity or

distance doesn't provide as much of an advantage as it

usually does in unexplored and unlabelled data. In fact, in

many of our analyses, we found that using Euclidean

distance usually provides more distinguished and

appropriate clusters. This can be observed in the following
graphs that we plotted by trying out various queries.

Figure 1 - Query ''Game of Thrones"

Figure 2 – Query "Programming Languages"

Figure 3 - Query "Harry Potter and the Chamber of

Secrets"

From the above graphs where we plot the Total TF-IDF of

the clusters using both Euclidean and Cosine distance, we

can observe that Euclidean distance gives higher

magnitude for most clusters and provides more divergent

clusters as well, which enhances the uniqueness of each

individual cluster.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55195 797

VI. CONCLUSION

Computer science is a field which builds and iterates over

previously done work to make it more effective. The

process of text mining and retrieving information can be

greatly enhanced by using an approach that can be

effective as well as fast. We suggest a similar approach

where processing the results acquired by using a search

engine can help us get more appropriate results, faster.

Out of the various methods and algorithms available for

reducing the dimensionality of text and clustering, we
chose k-means algorithm and a bag-of-words approach

over more advanced approaches involving Artificial

Intelligence and Natural Language Processing. The reason

behind this is that the original documents that we receive

already serve as a good base for relevant information.

Using our approach simply acts as an extra layer to

enhance the quality of text mining activity.

The significance of side information for effective

clustering and mining includes number of text mining

applications that contain side-information with them; this

information may be of various kinds including provenance

information of the documents, the links in the document,

web logs which depict user-access behavior and meta-

data. Lot of research work has been carried out in recent

years on the clustering issue in text collections in the
database and information retrieval society. This work is

basically designed for issue of pure text clustering in the

lack of other kinds of attributes. These attributes may

contain a lot of information for clustering purposes. In this

work, we are studying various techniques, for effective

text clustering and mining .After studying these techniques

we have come to the conclusion that, considering side

information for text data clustering and mining is an

excellent option because if the side information is related

then it can give extremely beneficial results .On the other

side if side information is noisy it can be hazardous to
merge it into the mining process, as it can add noise to the

mining process and degrade the quality of the mining

process. So by removing this kind of noise the quality of

mining process can be enhanced to a great extent.

Therefore, discussion suggests a way to design efficient

algorithm which combines classical partitioning algorithm

with probabilistic model for effective clustering approach,

so as to maximize the benefits from using side

information.

REFERENCES

1. Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu., On the use of Side

Information for Mining Text Data, IEEE Transactions, Vol.26,

No.6, JUNE 2014.

2. H. Frank, “Shortest paths in probabilistic graphs,” Operations

Research, vol. 17, no. 4, pp. 583–599, 1969.

3. L. G. Valiant, “The complexity of enumeration and reliability

problems,” SIAM J. Comput., vol. 8, no. 3, pp. 410–421, 1979.

4. N. J. Krogan, G. Cagney, and al., “Global landscape of protein

complexes in the yeast saccharomyces cerevisiae,” Nature, vol. 440,

no. 7084, pp. 637–643, March

5. S. Guha, R. Rastogi, and K. Shim, CURE: An efficient clustering

algorithm for large databases, in Proc. ACM SIGMOD Conf.,

6. R. Ng and J. Han, Efficient and effective clustering methods for

spatial data mining, in Proc. VLDB Conf., San Francisco, CA, USA,

1994, pp. |144155.

7. T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An efficient

data clustering method for very large databases, in Proc. ACM

SIGMOD Conf., New York, NY, USA, 1996, pp. 103114.

8. Lei Meng, Ah-Hwee Tan, Dong Xu Semi-Supervised

Heterogeneous Fusion for Multimedia Data Co-Clustering IEEE

Transactions On Knowledge And Data Engineering, vol. 26, no. 9,

pp.2293-2306, 2014.

9. Vishal Gupta, Gurpreet S. Lehal, A Survey of Text Mining

Techniques and Applications , in Journal of Emerging Technologies

in Web Intelligence, Vol. 1, No. 1, August 2009, pp.60-76

10. C. C. Aggarwal and C.-X. Zhai, Mining Text Data. New York, NY,

USA: Springer, 2012

11. I. Dhillon, Co-clustering documents and words using bipartite

spectral graph partitioning, in Proc. ACM KDD Conf., New York,

NY, USA, 2001, pp. 269274.

12. T. Liu, S. Liu, Z. Chen, and W.-Y. Ma, An evaluation of feature

selection for text clustering, in Proc. ICML Conf., Washington, DC,

USA, 2003, pp. 488495.

13. R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification

problems,” Discrete Applied Mathematics, vol. 144, no. 1-2, pp.

173–182, 2004.

14. M.Steinbach, G. Karypis, and V. Kumar, “A comparison of

document clustering techniques,” in Proc. Text Mining Workshop

KDD, 2000, pp. 109–110.

